

Africa-Museum Tervuren
14th of November 2019

Beyond adaptation:

Emergency planning in times of climate change

Increasing pluvial flood risk

- Due to their fast onset and localized nature, pluvial floods cause significant damage to the urban environment and are challenging to manage.
- Increasing pluvial flood risk due to climate change in combination with population growth.

Pan-European Challenge

Percentage of city flooded for RP10

Retail Spaces - Flood Exposure

Mitigate

Adapt

Emergency Relief

1953-2053

A 100 year storm in 2030 will be much worse than the 100 year storm of 1953

Pluvial flood risk maps

Co-designing the service

• Participants:

- ✓ Fire Brigade
- ✓ Civil Protection
- ✓ Police
- ✓ Medical Relief/Hospitals
- ✓ Public electricity distribution company
- ✓ Public transport company
- ✓ Relief planners
- ✓ Environmental department

Conclusions

- Vulnerability of networks, grids and punctual critical infrastructure (hospitals, train stations, court house, police HQ, 'dangerous' enterprises...)
- Impact on mobility
- Resilience (or lack of reslicience) of the impacted population
- qualify and quantify relief demand according to several future climate
 scenario's

'3D' – viewer (1)

1st dimension: critical infrastructure :

Brederode_T05_2050

Electricity Distribution cabins: 3

Vehicle entrance/exit: 1 (Courthouse)

Emergency exit: 1 (Courthouse)

'3D' – viewer (2)

• <u>2nd dimension: Mobility:</u>

regional road: 1 (Singel)

$^{\prime}3D' - viewer (3)$

3rd dimension: population:
 Brederode_integrated (to be developed further)

- Name of the statistical sector: Bell
- Reference of the statistical sector: E50-
- ➤ Inhabitants: 5831
- Elderly > 75 yrs: 457
- Percentage elderly > 75 yrs: 8 %

T05_2050_overall_view

Future developments

- Fine-tuning & validation of the socio-demographic parameters
- Integrating pluvial & fluvial flooding risks
- This was a **climate data** based project. But there is a strong demand from emergency & relief services to 'feed' this viewer with real time meteorological data and predictions (nowcasting), for example provided by rain shower radar. Whether C-band radars can deliver, or X-band radars are necessary, remains to be examined.

Further contact & information:

Erik De Bruyn 0032 479 79 13 89 Erik.debruyn@antwerpen.be

